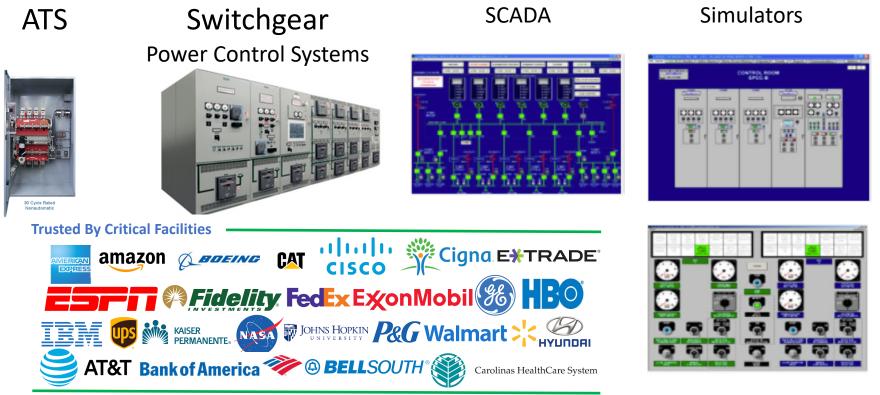


Distributed Energy & Microgrids Technology Options, Market Trends, and Incentives

Topics

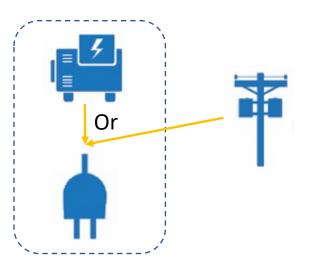
- Overview
- Russelectric Background
- Definitions
- Microgrid Controllers
- Sample Projects
- Market & Technology Trends
- Market Targeting
- TN Solar Market
- Sample Project Economics


- Microgrids Aren't New
- What Is New Is
 - Solar PV & Energy Storage Are Increasingly Viable Options
 - More Business, Policy, & Financial Drivers for
 - o Microgrids
 - Sustainability
 - o Resiliency

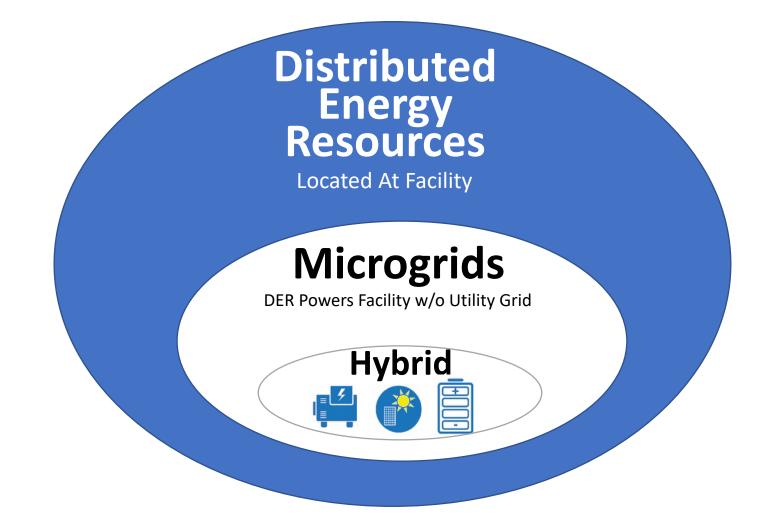
More Tech Options & Drivers = More Opportunities

Russelectric

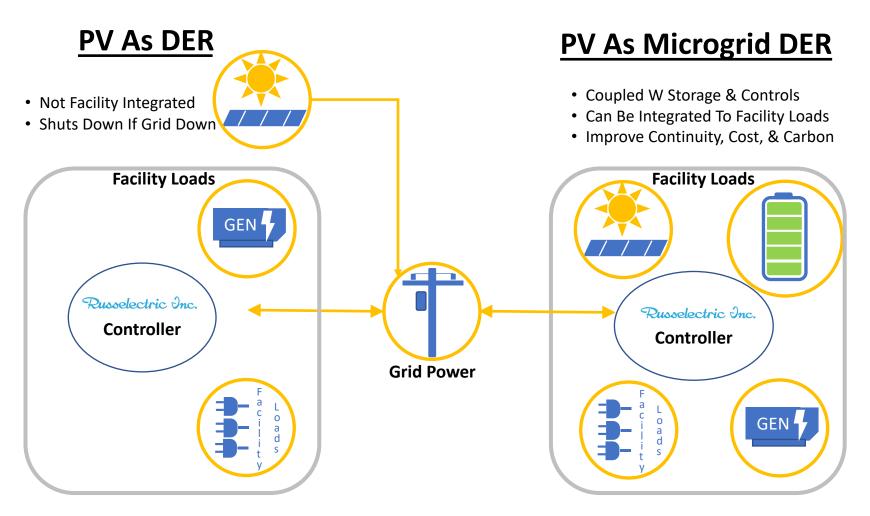
- 50 Years, Thousands of Installations
- Behind-the-Meter, Mid-To-Large Commercial & Industrial
- Mission Critical
 - Hospitals, Data Centers, Airports, Financial, Gov't, etc.


Restricted © Russelectric, A Siemens Company 2019

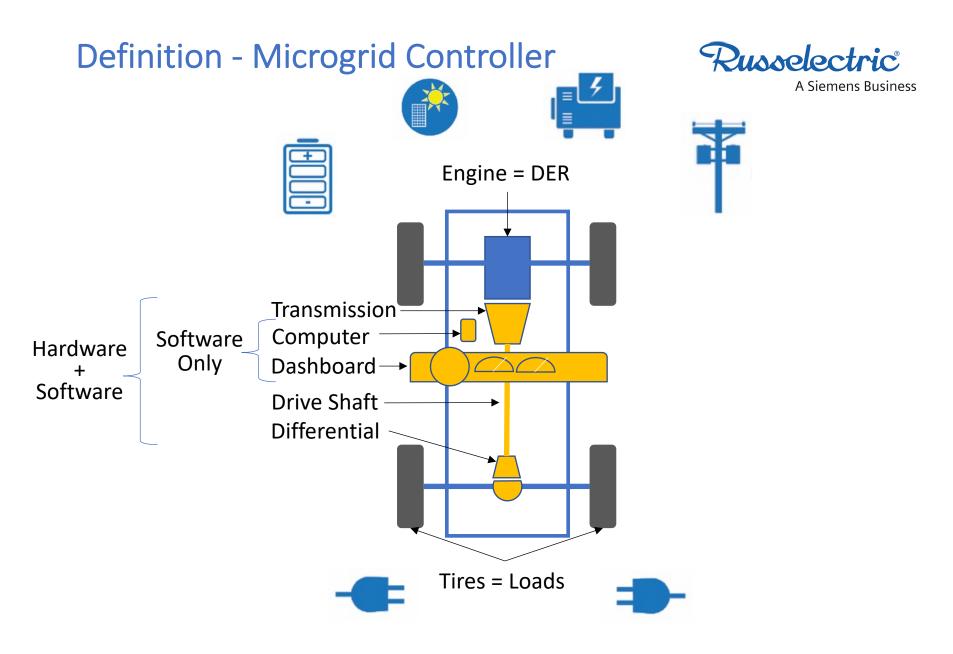
Definition - Microgrid


US DOE

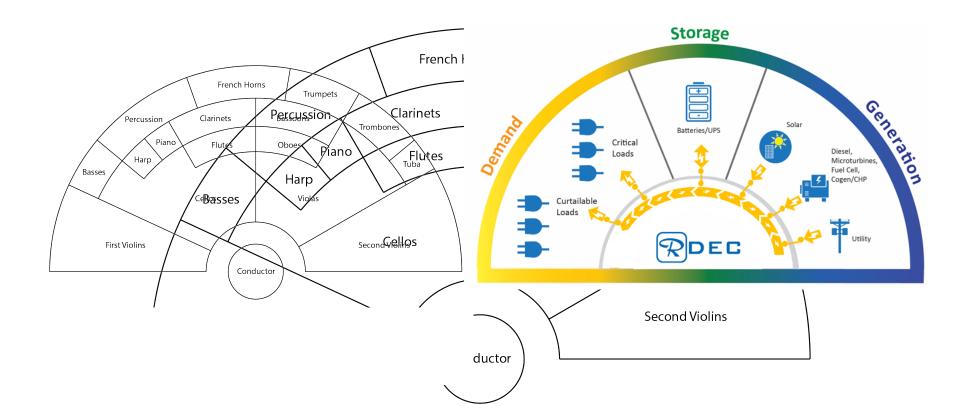
- Group of interconnected loads & Distributed Energy Resources (DER)
- Within defined electrical boundaries that
- Acts as a single controllable entity &
- Can connect / disconnect from the grid to operate
 - grid-connected or
 - island-mode.


Definition DER, Microgrids, Hybrid

Example DER vs Microgrid



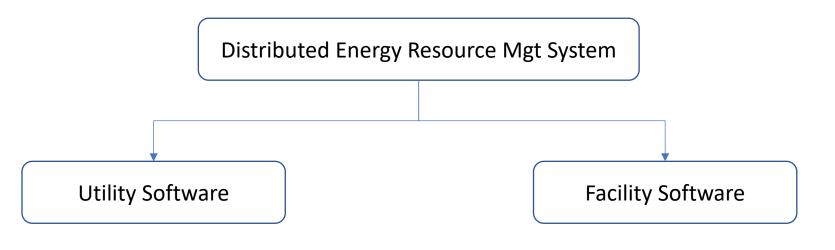
Most PV Installed To-Date = DER. Large Retrofit / Upgrade Opportunity.


Restricted © Russelectric, A Siemens Company 2019

Page 7

Definition 2 - Controller = Orchestra Conductor

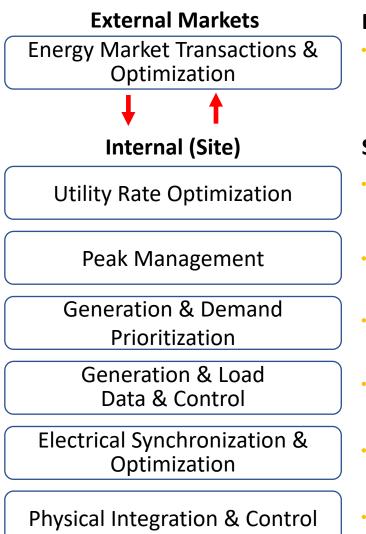
Distributed Energy Controller - Components



Storage ÷ Generation Demand ----Solar Batteries/UPS Critical Diesel, Loads Microturbines, Fuel Cell, Cogen/CHP Curtailable Loads ¥ Utility ØΕ C1 D3 СС D1 Presedectric Curtailab PV nverter o **User Interface** L 0 • • • 8 8 8 Database Critical Battery Inverter Generato Utility ο Computer / PLC

Power Control, Transfer Switches, Breakers

Definition – "DERMS"


 Manage Fleets of DER's in Utility's Service Territory

- Manage Onsite DER Market Transactions, Forecasting
- Some Overlap with Controller

Controller vs DERMS Functionality Ladder

A Siemens Business

DER Management System (DERMS)

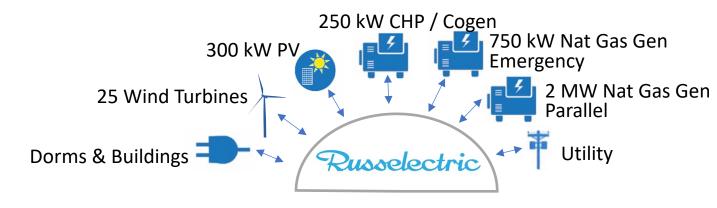
 Optimize demand & generation based on forward weather, fuel, loads, emissions permits, electric rates, external market opportunities, e.g. ISO markets.

Site Controller

- Optimize onsite resources & utility rates, e.g. For Days of Week & TOU Periods, Enter Energy & Demand Rates, Target Demands. Optimize.
- Specify target utility peak demand, prioritize generation & loads to achieve target.
- Specify Generation & Demand "Waterfall" or Prioritization.
- Single, integrated data and control platform, all generation, loads, devices. Macro & drill down views.
- Achieve & maintain optimal electrical & power quality performance attributes.
- Physically connect, switch, transfer loads & generation.

Sample Projects & PV + Storage + Generator Use Cases

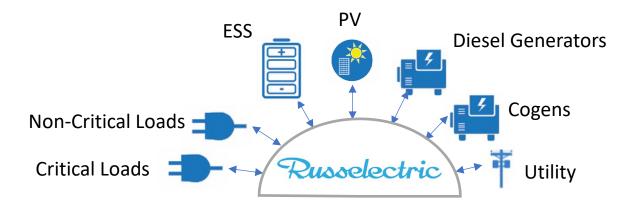
Sample Project


QUINNIPIAC UNIVERSITY

Russelectric A Siemens Business

• Drivers

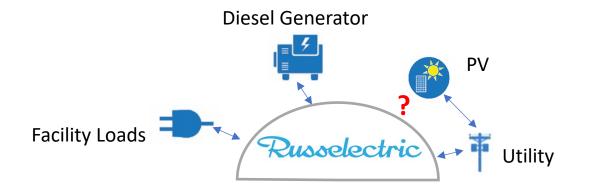
- Resiliency
- Cost Reduction
- Sustainability
- New Campus
 - Wind & PV
 - Nat Gas Gen & CHP
 - 15+ Buildings



BOSTON HARBOR

A Siemens Business

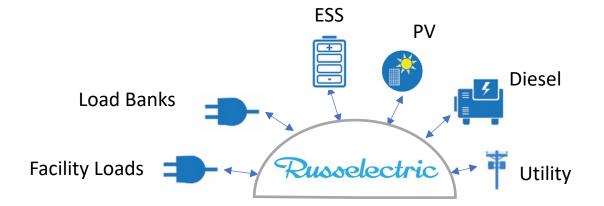
- Drivers
 - Resiliency
 - Cost Reduction
 - Sustainability
- New Casino 5 10 MW
 - Utility Power
 - PV & ESS
 - Diesel & CHP



Possible Project – Southwest Data Center

- Drivers
 - Cost Reduction
 - Resiliency

- Storm Destroyed Customer Owned Utility Transformer
- On Emergency Generator Power for Weeks
 - High Energy Cost
 - Emissions Penalties
- Diesel Based Microgrid Worked As Designed
- 2-3 MW Rooftop PV System
 - Not Part of Microgrid
 - Shut Down As Designed During Outage

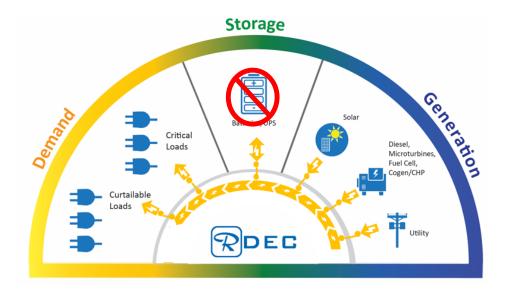

Drivers Cost Reduction

- Sustainability
- Product Development
- Customer Demos / Use Cases

Sample Project - Russelectric

Add PV + ESS To Traditional Diesel Microgrid

Hybrid Systems – 3 Use Cases

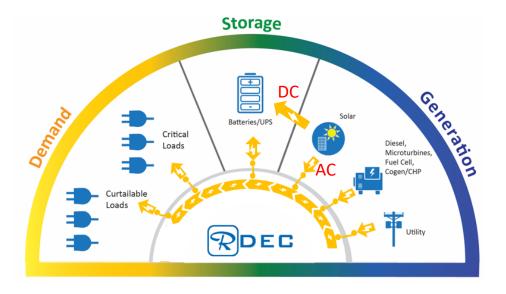


- PV + Generator No Storage
- PV AC Coupled to Storage + Generator
- PV DC Coupled to Storage + Generator

Hybrid Systems – PV + Generator

Russelectric A Siemens Business

- No Storage
- PV
 - AC Coupled
 - Grid Outage Likely Trigger Disconnect / Reset
- Generator
 - Forms Grid
 - Must Balance Changes in
 - Load
 - PV Generation
 - Risk
 - Wet Stacking
 - Back Feeding



Hybrid Systems – PV + Storage + Generator

Russelectric

A Siemens Business

- Storage, Depending on Size
 - Balances Changes in
 - Load
 - PV Generation
 - Allows Generator to Operate More Consistently, Efficiently
 - Could Delay Use of Generator
 - Or, Rely on Storage for Primary Backup Power, Turning on Generator Only to Re-Charge Battery
- CA (Maybe Other States)
 - Restrictions on DC Coupled PV for Systems > 10 kW

AC

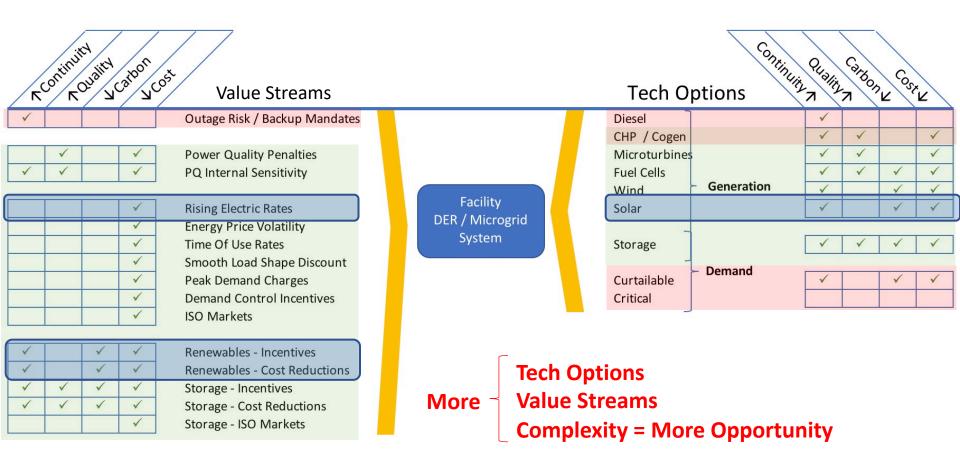
- Higher Cost
- Higher Conversion Losses
- Trip During Outage
- Easier to Integrate Storage with Existing PV
- More Flexibility & Control

DC

- Lower Cost
- Lower Conversion Losses
- Ride Thru Outage
- Harder to Integrate
 Storage with Existing PV
- Less Flexibility & Control
- Restrictions on Large PV
- If PV kW > Battery kW

Market & Technology Trends

Microgrid Drivers



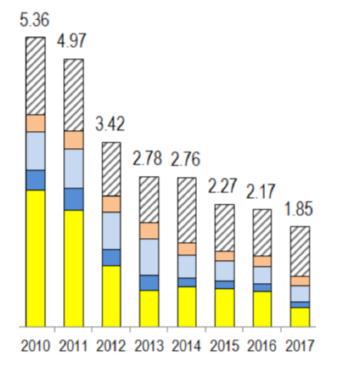
Value Streams & Technology Options

A Siemens Business

Traditional Mission Critical Market

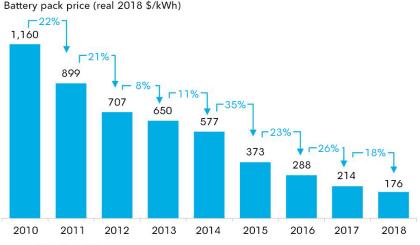
PV Market

New / Emerging Technologies & Market Drivers


Restricted © Russelectric, A Siemens Company 2019

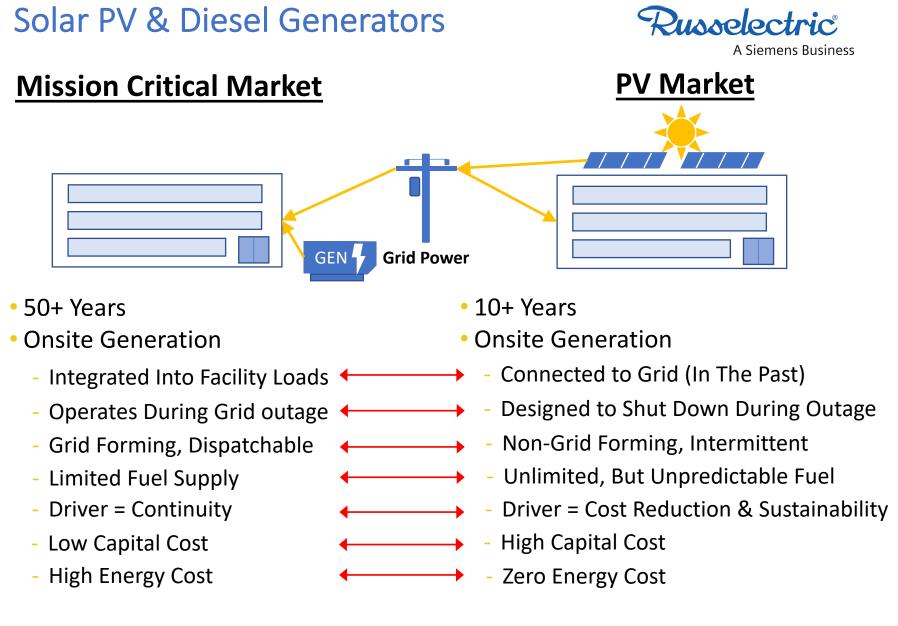
Solar & Storage Cost Declines

Solar PV \$/Watt


Storage \$/kWh

PV Maturing Tech - Incentives \downarrow

https://www.nrel.gov/docs/fy17osti/68925.pdf


Lithium-ion battery price survey results: volume-weighted average

Source: BloombergNEF

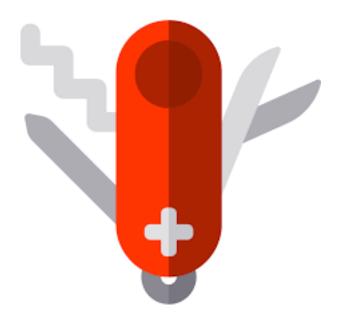
Storage Emerging Tech - Incentives \uparrow

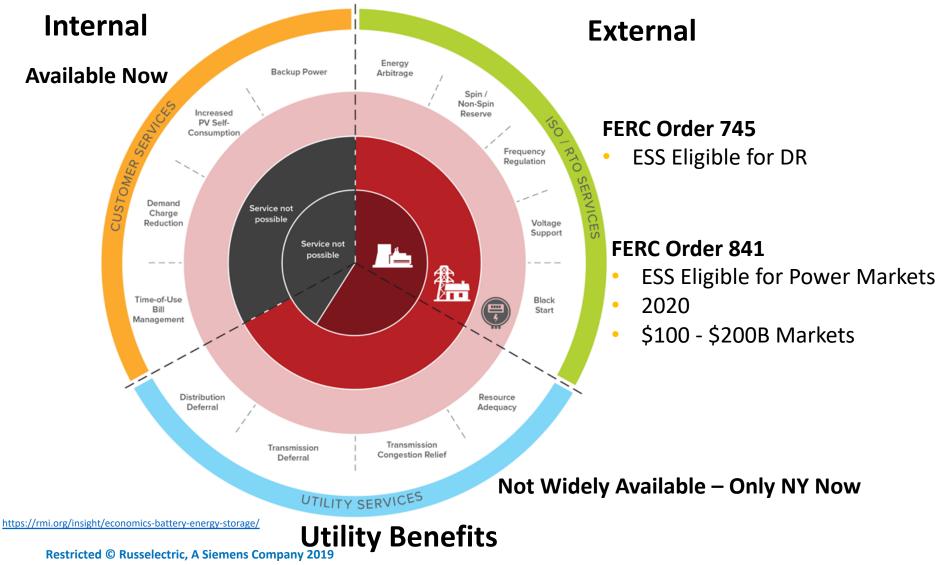
https://about.bnef.com/blog/behind-scenes-take-lithium-ion-battery-prices/

Solar PV & Energy Storage

- Investment Tax Credit Eligible
- Shuts Down During Outage
- Non Grid Forming, Intermittent 🔶 -
- Driver = Cost & Sustainability
- High Capital Cost
- Low Operating Cost

- ITC Eligible IF 75+% Charged by PV
 - **Rides Through Outage**
 - Grid Forming, Dispatchable
 - Driver = Cost, Resiliency, Power Quality
- High Capital Cost -
- Low Operating Cost




Energy Storage Systems (ESS)

- Multiple Capabilities
- Multiple Value Streams

ESS – Multiple Value Streams & Value Stacking Russelectric A Siemens Business

Energy Storage - New Cash Flows

- Storage Incentives CA, NY, & MA
 - 200 400 \$/kWh
- FERC Order 745
 - ESS Eligible for Demand Response Programs
- FERC Order 841
 - Opens \$100 \$200B ISO Power Markets to ESS
 - ESS >= 100 kW
 - Begins 2020

Cost	Controllability	
Lo	Lo	 Central Inverters – Entire Array
Med	Med	 String Inverters – Groups of Panels
Hi	Hi	 Micro-Inverters & Power Optimizers – Individual Panels

CA Smart Inverters Rule 21, UL 1741, IEEE 1547

- Enacted 2014, Phased In 2017 2019
 - describes the interconnection, operating and metering requirements for generation facilities to be connected to a utility's distribution system, over which the California Public Utilities Commission (CPUC) has jurisdiction
- UL 1741 Tests
 - Anti-islanding
 - Low/High Voltage Ride Through
 - Low/High-Frequency Ride Through
 - Must Trip Test

- Ramp Rate (Normal & Soft-Start)
- Specified Power Factor
- Volt/Var Mode
- Frequency Watt
- Volt Watt
- Intended to supplement & be used in conjunction with IEEE 1547 (Standard for Interconnecting Distributed Resources with Electric Power Systems) and IEEE 1547.1 (Standard for Conformance Test Procedures) in accordance with NEC
- make PV systems & grid more resilient during normal & abnormal operating conditions
- require reactive power priority (RPP) setting to be activated as default Volt/Var function
- enhance anti-island testing to ensure PV systems disconnect when required
- voltage and frequency ride through and ramp rate control testing ensure PV systems act in a predictable fashion as the grid experiences fluctuations to its operational thresholds
- ramp rate control allows grid operators the ability to balance thermal generation output against PV output while maintaining grid stability

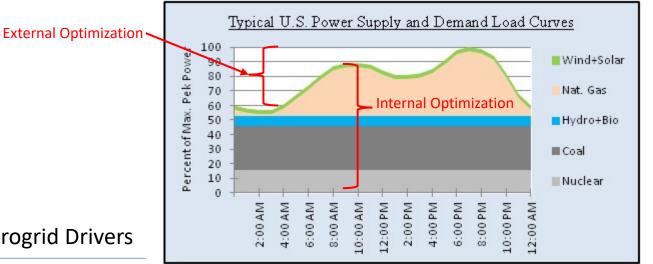
Sustainability Driver

"Walmart on Track to Reduce 1 Billion Metric Tons of Emission from Global Supply Chains by 2030" (Press Release 5/8/19)

- Project Gigaton Avoid 1 Billion Metric Tons of Emissions by 2030, with Suppliers
- 2025 Target 50% Renewable Energy. Currently at 28%

"<u>Walmart Enters into 46 Power Purchase Agreements to Supply</u> (Solar) Power to Stores in 5 States" (5/14/19)

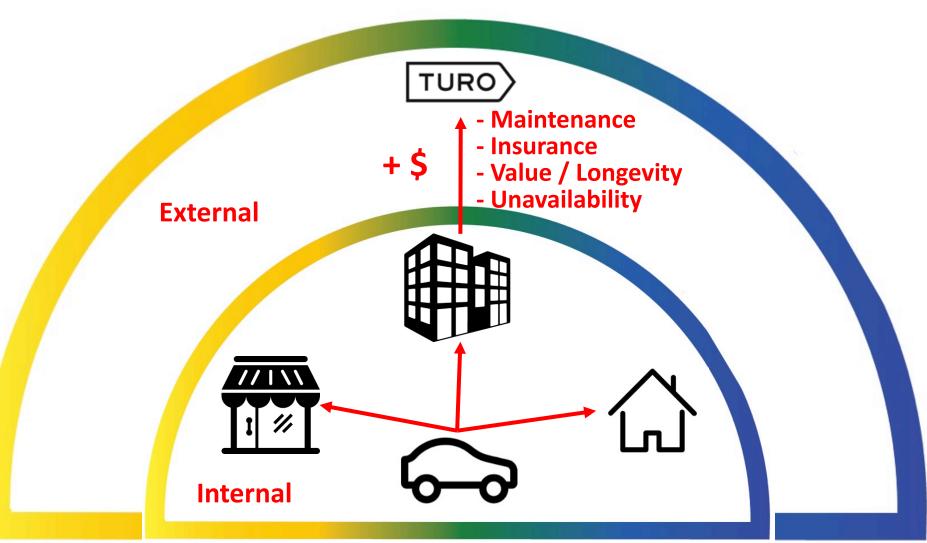
"Why Walmart and Other Companies Are Sticking with the Paris Climate Accord" (NYT, 11/6/19)



New Financial Markets

Restricted © Russelectric, A Siemens Company 2019 Page 33

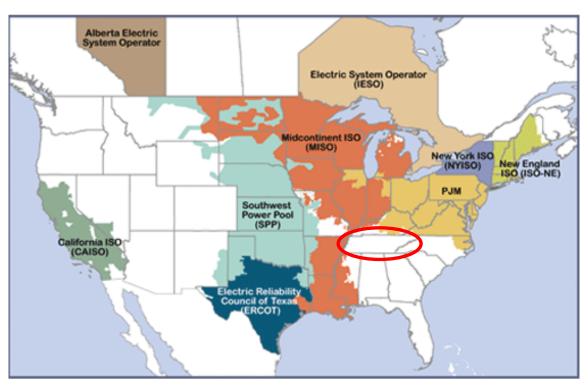
"Microgrid" = Little Utility. So, What Do **Utilities Do?**



- **Microgrid Drivers**
 - \uparrow Continuity
 - \uparrow Power Quality
 - √GHG
 - \downarrow Energy Costs
 - + Parallel
 - + Island
 - + Re-Synchronize

- "Obligation To Serve" = Match Supply to Demand
- Deliver Power Compliant w US Voltage / Frequency Standards
- Power Portfolio Compliance = Renewable Portfolio Standard
- Least Cost Power = Integrated Resource Planning
 - Internal / "Domestic" Financial Optimization
 - Deploy Least Cost Generation Sources to Meet Service Territory Demand
 - External / "International Trade" Financial Optimization
 - Buy / Sell / Trade Generation Assets to Other Utilities / Power Marketers

Example - Internal (Site) vs External Markets Russelectric A Siemens Business



Independent System Operator Markets

Russelectric

A Siemens Business

- \$100-200 B Markets
- Energy
- Capacity
- Demand Response
- Ancillary Services
 - Reserves
 - Frequency Response
 - ...

https://www.ferc.gov/industries/electric/indus-act/rto.asp

"External" Markets - What Does An ISO Do?

A Siemens Business

- Independent System Operator
 - Regional Electric Grid "Air Traffic Controller"
 - Mandate To Ensure
 - Overall Grid Reliability
 - $\,\circ\,$ Electric Generation Meets Electric Demand, Near & Long Term
 - Operates Day Ahead, Real Time, & Long Term Market Auctions
 - Energy
 - Demand / ICAP
 - Demand Response
 - Ancillary Services
 - Regulation
 - Voltage Support
 - Black Start

- FERC Order 841 Opens All of These Markets to Storage

 \circ Effective 2020

Market Transactions - Sample

- Day 1 (Day Ahead Market)
 - Facility Has 1 MW / 2 MWh Battery
 - Next Day, 2, Power Market Price Spike, 1000 \$/MWh, Instead of 50 \$/MWh
 - Facility Bids / Commits to Supply Market 2 MWh at 1:00 pm Day 2
- Day 2 Spot Market (Option 1)
 - Facility Has Outage at noon. Drains Battery. Can't Deliver at 1:00
 - ISO Buys Replacement Power on Spot Market at \$2000 / MWh
 - ISO "Settles" With Facility, Charging \$2000 \$1000 = \$1000 / MWh
- Day 2 Spot Market (Option 2)
 - No Outage at Facility Before 1:00 pm
 - Facility Delivers Power & Receives \$1000 / MWh * 2 MWh = \$2,000
- Day 2 Spot Market (Option 3)
 - Facility Delivers Power to Market, Receives \$2,000
 - Facility Has Outage at 2:00 PM, Battery Is Drained. Cost?

Geographic Markets

Regional Attractiveness Solar, Storage, & Hybrid Microgrids

A Siemens Business

Regional Market Drivers

Drivers
↑ PV Installed Base
♠ PV New Installations
↑ Solar Irradiance
↑ Policy : PV & Storage
↑ Sustainability Driven
↑ Electric Rates
↑ Demand Charges
↑ TOU Rates & On / Off Peak Spread
↑ Nat Disaster Continuity Risk
↑ ISO Market Access

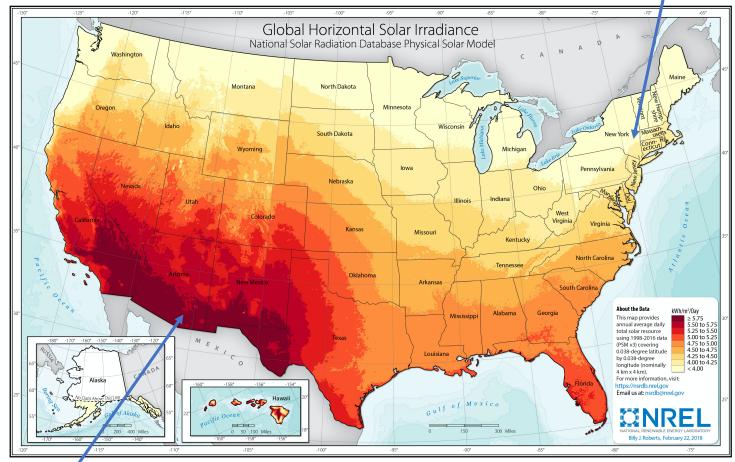
Solar PV Installed Capacity by State Q2 2019

Russelectric

A Siemens Business

		Rank	State	MW	%	Rank	State	MW	%
		1	CA	25,773	37.0%	26	VT	304	0.4%
		2	NC	5,601	8.0%	27	AL	283	0.4%
	60%-	3	AZ	3,873	5.6%	28	MS	235	0.3%
		4	NV	3,502	5.0%	29	ОН	231	0.3%
00/		5	FL	3,337	4.8%	30	MO	230	0.3%
8% -]	6	ТХ	3,029	4.3%	31	WA	197	0.3%
		7	NJ	2,911	4.2%	32	RI	175	0.3%
		8	MA	2,567	3.7%	33	MI	160	0.2%
		9	NY	1,775	2.5%	34	AR	144	0.2%
		10	UT	1,671	2.4%	35	IL	139	0.2%
		11	GA	1,571	2.3%	36	DE	132	0.2%
		12	CO	1,268	1.8%	37	WY	108	0.2%
		13	MN	1,206	1.7%	38	LA	107	0.2%
		14	MD	1,174	1.7%	39	NH	95	0.1%
		15	HI	999	1.4%	40	IA	94	0.1%
		16	ME	999	1.4%	41	WI	93	0.1%
		17	SC	831	1.2%	42	DC	77	0.1%
		18	NM	818	1.2%	43	MT	57	0.1%
		19	VA	803	1.2%	44	NE	45	0.1%
		20	OR	612	0.9%	45	KY	44	0.1%
		21	СТ	606	0.9%	46	ОК	36	0.1%
		22	ID	488	0.7%	47	KS	29	0.0%
		23	PA	452	0.6%	48	WV	9	0.0%
	<	24	TN	429	0.6%	49	AK	4	0.0%
		25	IN	355	0.5%	50	SD	2	0.0%
						51	ND	0	0.0%
	Restricted	d © Russele	ctric. A Siemens	Company 2019			Total	69,683	100.0%

Restricted © Russelectric, A Siemens Company 2019 Page 41


https://seia.org/states-map

Solar PV – Irradiance Map

A Siemens Business

Albany 1237 MWh/kW

Tucson 1757 MWh/kW 42% More Than Albany

Restricted © Russelectric, A Siemens Company 2019

Page 42

2019 State Solar Power Rankings Report

How to read the report:

This chart ranks the 50 states and the District of Columbia, from best (green) to worst (red), based on their solarfriendliness. For example, Massachusetts receives the best score, while Alabama receives the worst.

The outermost ring (closest to each state label) shows the overall grades awarded the states. The inner rings represent factors contributing to the grades.

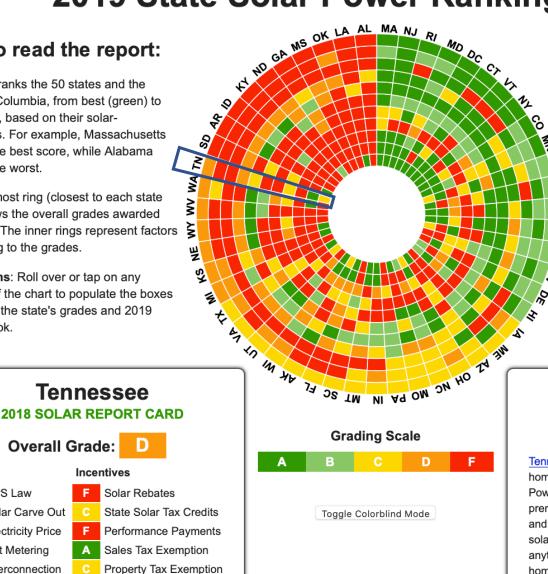
Instructions: Roll over or tap on any segment of the chart to populate the boxes below with the state's grades and 2019 solar outlook.

Overall Grade:

Tennessee

Incentives

Solar Rebates


IRR:

6.4%

F

F

Α

Factors:

1) Overall Grade

2) Renewable Portfolio Standard (RPS)

- 3) Solar Carve Out
- 4) Electricity Price
- 5) Net Metering

至

ŝ

NM

R

- 6) Interconnection
- 7) Solar Rebates
- 8) State Solar Tax Credits
- 9) Performance Payments
- 10) Sales Tax Exemption
- 11) Property Tax Exemption

Tennessee 41st place

Trend: 🔺 1

Tennessee's TVA used to offer a decent deal for homeowners who installed solar panels. The Green Power Providers Program used to pay a tiny premium for every kWh of solar added to the grid, and used to offer a modest \$1,000 rebate for any solar installation. All those 'used tos' don't add up to anything but a big fat 'nope' for current homeowners who want to add solar systems to their roofs.

Policy

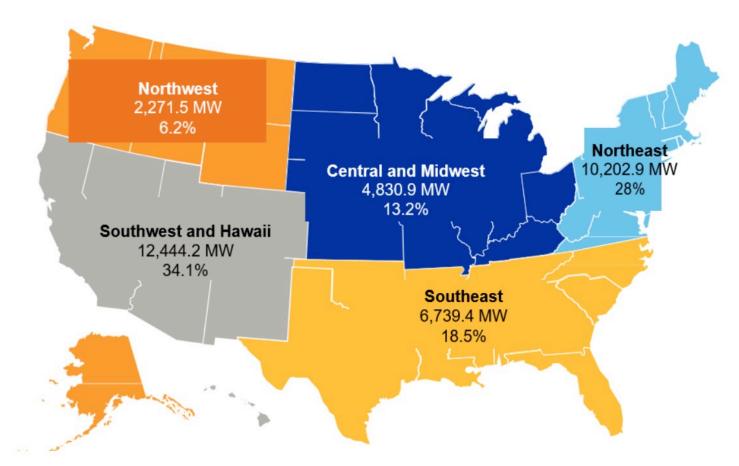
F

D

E RPS Law

Solar Carve Out

Electricity Price


Net Metering

Storage - Market Size & Potential

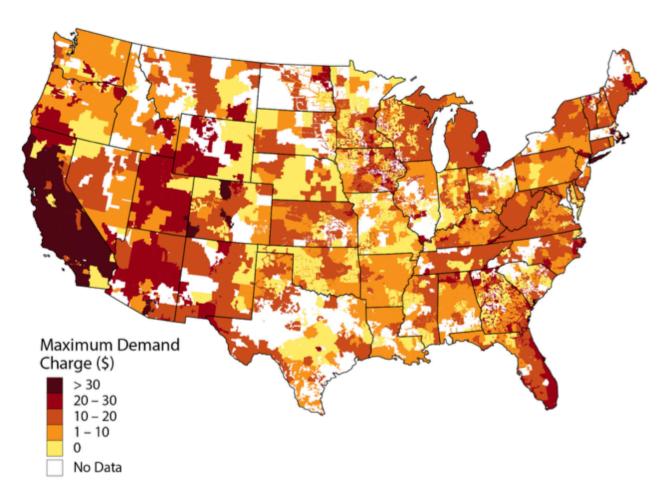
A Siemens Business

Projected Capacity Additions by Region (2017-2025)

Southwest & Northeast are each projected to install nearly as much as NW, Central, and SE combined.

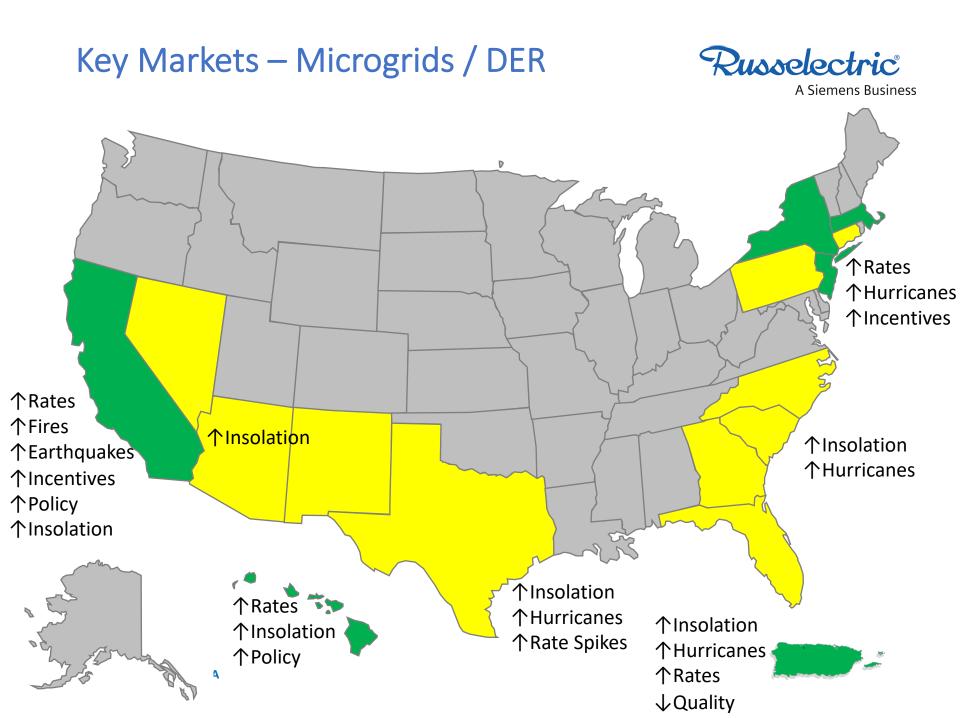
Commercial & Industrial Electric Rates 2018

Russelectric


A Siemens Business

Rank	State	Cents / kWh	Rank	State	Cents / kWh
1	HI	27.9	26	IN	8.3
2	AK	18.4	27	ОН	8.3
3	MA	16.3	28	NE	8.2
4	RI	16.3	29	AL	8.2
5	СТ	16.2	30	GA	8.1
6	CA	15.5	31	MS	8.1
7	NH	15.0	32	NM	8.1
8	VT	13.3	33	VA	8.0
9	NY	12.9	34	SC	8.0
10	DC	11.9	35	IL	7.9
11	NJ	11.9	36	NC	7.8
12	ME	11.0	37	MT	7.8
13	MD	10.2	38	PA	7.8
14	MI	9.5	39	OR	7.8
15	AZ	9.4	40	IA	7.7
16	WI	9.3	41	WY	7.5
17	KS	9.2	42	WV	7.5
18	MN	9.2	43	UT	7.3
19	FL	9.1	44	KY	7.2
20	DE	9.0	45	ID	7.1
21	SD	8.9	46	ТХ	7.0
22	CO	8.9	47	NV	7.0
23	TN	8.8	48	WA	6.9
24	ND	8.7	49	LA	6.7
25	MO	8.6	50	ОК	6.6
	A Siemens Compa	ny 2019	51	AR	6.4

Restricted © Russelectric, A Siemens Company 2019


Maximum Demand Rates By Region

https://www.nrel.gov/solar/assets/pdfs/2017-us-demand-charges-webinar.pdf

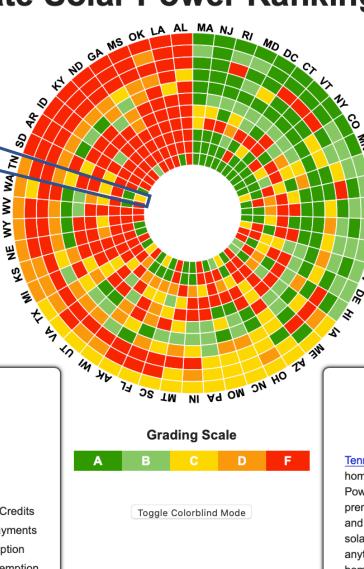
Restricted © Russelectric, A Siemens Company 2019

Hybrid Microgrid Market Attractiveness Sample States

Driver	NY	NJ	MA	FL	TN	тх	СА
↑ PV Installed Base	\checkmark	\checkmark	\checkmark	~	X	\checkmark	\checkmark
↑ PV New Installations	\checkmark	\checkmark	\checkmark	~	~	\checkmark	\checkmark
↑ Solar Irradiance	X	X	X	\checkmark	~	\checkmark	\checkmark
↑ Policy : PV & Storage	\checkmark	\checkmark	\checkmark	~	X	X	\checkmark
↑ Sustainability Driven	\checkmark	\checkmark	\checkmark	?	?	?	\checkmark
↑ Electric Rates	\checkmark	\checkmark	\checkmark	\checkmark	~	~	\checkmark
↑ Demand Charges	\checkmark	\checkmark	\checkmark	?	\checkmark	X	\checkmark
↑ TOU Rates & On / Off Peak Spread	?	?	?	?	\checkmark	\checkmark	\checkmark
↑ Nat Disaster Continuity Risk	\checkmark	\checkmark	\checkmark	\checkmark	X	\checkmark	\checkmark
↑ ISO Market Access	\checkmark	\checkmark	\checkmark	X	X	\checkmark	\checkmark
	?	?	?	?	?	?	?

Tennessee

Restricted © Russelectric, A Siemens Company 2019 Page 49


2019 State Solar Power Rankings Report

How to read the report:

This chart ranks the 50 states and the District of Columbia, from best (green) to worst (red), based on their solarfriendliness. For example, Massachusetts receives the best score, while Alabama receives the worst.

The outermost ring (closest to each state label) shows the overall grades awarded the states. The inner rings represent factors contributing to the grades.

Instructions: Roll over or tap on any segment of the chart to populate the boxes below with the state's grades and 2019 solar outlook.

Factors:

1) Overall Grade

2) Renewable Portfolio Standard (RPS)

- 3) Solar Carve Out
- 4) Electricity Price
- 5) Net Metering

至

ŝ

NM


R

- 6) Interconnection
- 7) Solar Rebates
- 8) State Solar Tax Credits
- 9) Performance Payments
- 10) Sales Tax Exemption
- 11) Property Tax Exemption

Tennessee 41st place

Trend: 🔺 1

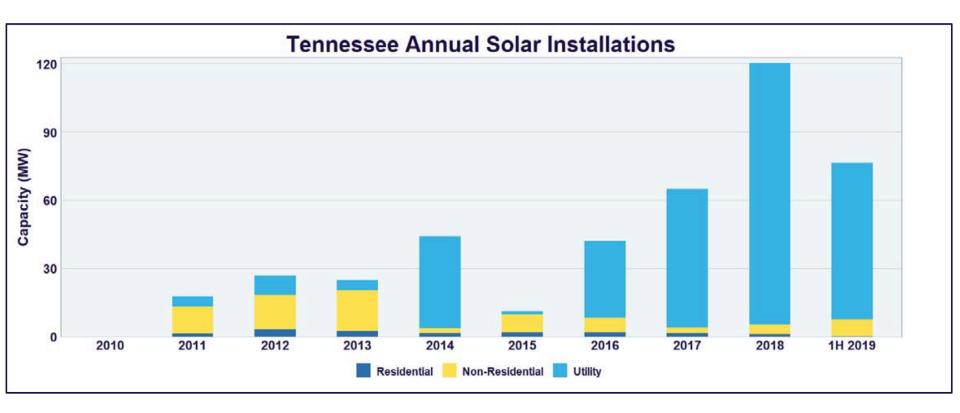
Tennessee's TVA used to offer a decent deal for homeowners who installed solar panels. The Green Power Providers Program used to pay a tiny premium for every kWh of solar added to the grid, and used to offer a modest \$1,000 rebate for any solar installation. All those 'used tos' don't add up to anything but a big fat 'nope' for *current* homeowners who want to add solar systems to their roofs.

Solar Spotlight – Tennessee

At A Glance

- Solar Installed: 429.4 MW (120.4 MW installed in 2018)ⁱ
- National Ranking: 23rd (17th in 2018)
- Enough Solar Installed to Power: 45,000 homes
- Percentage of State's Electricity from Solar: 0.40%ⁱⁱ
- Solar Jobs and Ranking: 4,690 (14th in 2018)ⁱⁱⁱ
- Solar Companies in State: 165 companies total; 43 Manufacturers, 74 Installers, 48 Others^{iv}
- Total Solar Investment in State: \$734.29 million (\$123.58 million in 2018)
- Price Declines: 32% in the last 5 years
- Growth Projections and Ranking: 752 MW over the next 5 years (ranks 28th)

https://www.seia.org/sites/default/files/2019-10/Factsheet_Tennessee.pdf


TN Notable Solar PV Projects

- Providence Solar project has the capacity to generate 16.0 MW of electricity -- enough to power over 1,549 Tennessee homes.^v
- IKEA and Volkswagen have both gone solar in Tennessee. VW has installed a 9 MW project at its location in Chattanooga.^{vi}
- At 24 MW, Selmer 1 and 2 are among the largest solar installations in Tennessee. Completed in 2016, these
 photovoltaic projects have enough electric capacity to power more than 2,323 homes.^{vii}

TN - Solar PV Historic Installations

TN NES C&I Rates

• GSA 2

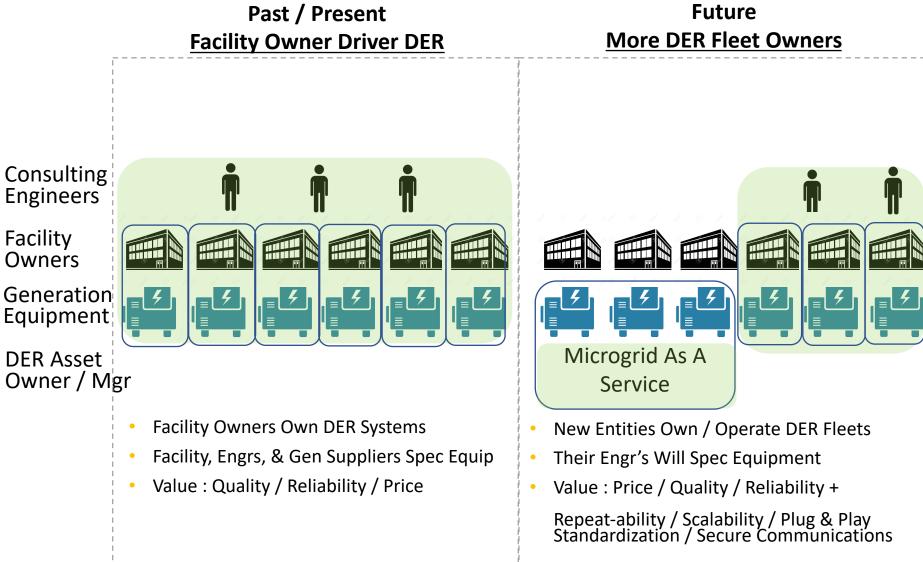
Demand < 50 kW, Monthly Energy < 15K kWh

- O Demand = 5 \$/kW-Mo
- \circ Energy = 9 10 c/kWh
- 50 < Demand < 1000 kW, Energy > 15 K kWh
 - Demand = 5 \$/kW-Mo, 1st 50 kW, 19 \$/kW-Mo Above
 - Energy = 10 c/kW 1st 15K kWh, 6 c/kWh Above
- 1000 < Demand
 - o Demand = 19 \$/kW-Mo
 - o Energy = 6 c/kWh
- LGS 2 5000 kW < Demand <= 15,000
 - Demand

On Peak 10 \$/kW-Mo, Max 5 \$/kW-Mo

– Energy

On Peak 7-8 c/kWh, Off Peak 2 c/kWh



Decision Makers & Opportunities

Equipment Decision Makers

A Siemens Business

Restricted © Russelectric, A Siemens Company 2019

PV & Storage Sample Economics

Restricted © Russelectric, A Siemens Company 2019 Page 57

Solar PV – Levelized Cost of Energy

Year	0		1	2	3	4	5	 21	22	23	24	25
\$000												
Operating Expenses		\$	15.0	\$ 15.3	\$ 15.5	\$ 15.8	\$ 16.1	 \$ 21.3	\$ 21.7	\$ 22.1	\$ 22.5	\$ 22.9
Capital Expense	\$1,400.0											
Investment Tax Credit		\$	(364.0)									
Total Expenses	\$1,400.0	\$	(349.0)	\$ 15.3	\$ 15.5	\$ 15.8	\$ 16.1	 \$ 21.3	\$ 21.7	\$ 22.1	\$ 22.5	\$ 22.9
Generation (MWh)			1,350	1,343	1,337	1,330	1,323	 1,221	1,215	1,209	1,203	1,197
Total Expenses (\$000)	\$ 1,502.4											
Total Generation	31,801	M٧	Vh									
LCOE	\$ 47.2	\$/N	∕IWh	>								

Restricted © Russelectric, A Siemens Company 2019 Page 58

- 1 MW Fixed Mount Rooftop System
- Capital Cost = 1.4 \$/Watt
- Operating Expenses 15 \$/kW, 2% Escalation
- ITC = 26%
- kWh / kW = 1350, 0.5% Annual Degradation

Solar PV Sample Economics

							Debt	Wit	h Debt
				Rate			Payback		Payback
State	City	kWh / kW / Yr	\$/Watt	\$/MWh	Incentive	IRR	Yrs	IRR	Yrs
MA	Worcester	1288	1.6	150.0	Firm Rate	16%	5.1	34%	< 1
NY	Albany	1238	1.6	106.0	0.2 \$/Watt	18%	4.3	44%	< 1
NJ	Freehold	1325	1.6	73.0	200 \$/MWh	32%	2.4	72%	< 1
FL	Orlando	1525	1.4	62.5		8%	9	12%	4.7
ΤN	Nashville	1350	1.4	80.0		10%	7.8	18%	1.8
ТХ	Dallas	1506	1.4	70.0		10%	8.2	16%	2
CA	Las Angeles	1661	1.6	98.5		15%	5.6	31%	< 1

- 1 MW Fixed Mount Rooftop System
- Capital Cost = 1.4 1.6 \$/Watt
- Operating Expenses 15 \$/kW, 2% Escalation
- Debt Scenario = 50% of Capital Cost, 6%, 15 Yrs

Storage – Sample Economics – Peak Clipping

A Siemens Business

Av	oided	No Debt		With	Debt
Demand			Payback		Payback
\$/k	w-Mo	IRR	Yrs	IRR	Yrs
\$	10.0	10%	7.8	16%	4.1
\$	15.0	17%	6.6	30%	2.3
\$	20.0	22%	3.9	41%	1.7

Financial Benefit Reflects Only Peak Clipping. Does Not Reflect

- Time of Use Energy Arbitrage
- KVAR Discount
- Avoid Solar PV Excess Power
- Resiliency Value

- 1 MW / 2 MWh System @ 600 \$/kWh Capital Cost
- 26% 2020 Investment Tax Credit for Solar Applies
- Clip Peak 75% of Storage Capacity, i.e. 750 kW
- Operating Expenses 20 \$/kW
- Replace Batteries Yr 12 at 80 \$/kWh
- Debt Scenario = 50% of Capital Cost, 6%, 15 Yrs

Storage – Sample Economics Peak Clipping & TOU Arbitrage

No	Debt	With Debt			
	Payback		Payback		
IRR	Yrs	IRR	Yrs		
19%	19% 4.8		3		

Financial Benefit Reflects Only Peak Clipping. Does Not Reflect

- Clip Peak 75% of Storage Capacity, i.e. 750 kW @ 10 \$/kW-Mo
- TOU Energy Arbitrage
 - Charge Battery Off Peak at 2 c/kWh
 - Discharge On Peak at 7 c/kWh

Does Not Reflect

- KVAR Discount
- Avoid Solar PV Excess Power
- Resiliency Value

- 1 MW / 2 MWh System @ 600 \$/kWh Capital Cost
- No Investment Tax Credit. No Solar Charging.
- Operating Expenses 15 \$/kW
- Replace Batteries Yr 12 at 80 \$/kWh
- Debt Scenario = 50% of Capital Cost, 6%, 15 Yrs

PV + Storage – Sample Economics Peak Clipping

No I	Debt	With Debt			
	Payback	Payback			
IRR	Yrs	IRR	Yrs		
10%	7.8	16%	4.1		

Financial Benefit Reflects Only

- PV Energy Avoids 8 c/kWh On Peak Energy
- Clip Peak 75% of Storage Capacity, i.e. 750 kW @ 10 \$/kW-Mo
- TOU Energy Arbitrage Not Applicable

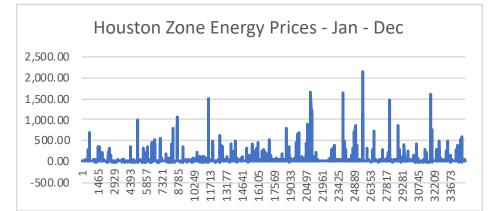
Does Not Reflect

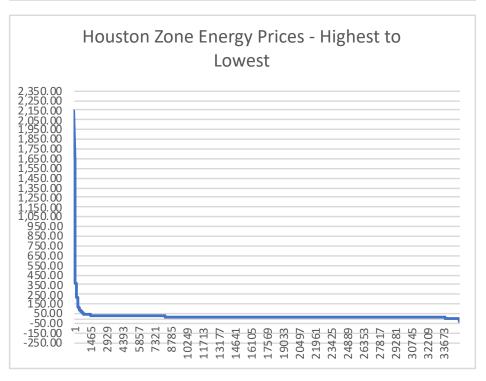
- KVAR Discount
- Avoid Solar PV Excess Power
- Resiliency Value

Assumptions:

- 1 MW / 4 MWh System @ 600 \$/kWh Capital Cost
- No Investment Tax Credit. No Solar Charging.
- Operating Expenses 20 \$/kW
- Replace Batteries Yr 12 at 80 \$/kWh
- Debt Scenario = 50% of Capital Cost, 6%, 15 Yrs

Restricted © Russelectric, A Siemens Company 2019 Page 62


TX - Storage Economics – Energy Arbitrage

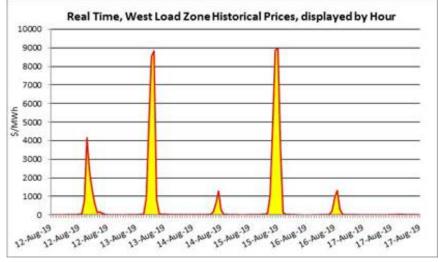


A Siemens Business

2016 Data

- Prices Spike to 2000+ \$/MWh
- Most Prices Below 50 \$/MWh
- Prices Above 60 \$/MWh 185 Hrs

TX - Storage Economics – TOU Arbitrage 2019 Russelectric


A Siemens Business

ELECTRIC POWER - 12 Aug 2019 | 22:20 UTC - Houston

ERCOT sets peakload record; real-time prices top \$6,000/MWh

COMMODITIES AUGUST 14, 2019 / 10:20 AM / 2 MONTHS AGO

Texas power prices briefly soar to \$9,000/MWh as heat wave bakes state

Restricted © Russelectric, A Siemens Company 2019 Page 64

https://www.energycentral.com/c/pip/ercot-price-volatility-deeper-dive-causes-and-potential-effects

TX - Storage – Sample Project Economics *Russelectric*

A Siemens Business

Energy Price	0%	6 Debt	509	% Debt
Scenario	IRR	Payback (Yrs)	IRR	Payback (Yrs)
Houston 2016	10%	8.7	14%	6.8
X 2	12%	7.3	20%	4.6
X 3	16%	5.9	27%	3.0

Key Assumptions

- \$500 / kWh Capital Cost
- Investment Tax Credit = 30%
- 20 Yr Project Life
- Debt = 15 yrs @ 5.00%

Key Notes

- Includes
 - Avoid Above Normal Energy Price Spikes
 - Avoid 7 \$/kW Demand Charge for 75% of ESS kW
 - Participate in Ancillary Services Market
 - 26 wks / yr, 5 days / wk, 4 hr / day, 50% of kW, @ 5 \$/MWh
- Does Not Include
 - Resiliency Value
 - Power Quality Improvement
 - Demand Control Power Discount
 - Index Power Discount

Questions / Follow-Up

Tim Kelley Market Director – Renewable & Storage Solutions (M) 802-233-9689 <u>TKelley@Russelectric.com</u>